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J. Phys. A: Math, Gen. 15 (1982) 3785-3797. Printed in Great Britain 

Peculiarities of N = 1 supergravity with local U(l)  
invariance 

A S Galperin, V I Ogievetsky and E S Sokatchev 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
POB 79, Moscow, USSR 

Received 2 June 1982 

Abstract. The minimal N = 1 supergravity with local U(1) invariance is analysed in the 
framework of complex superspace. The existence of a new geometric dimensionless scalar 
invariant is shown. It is not present in real superspace geometry. In order to write down 
an action this invariant must be constrained. The constraint can be implemented in the 
action by means of a Lagrange multiplier. A weaker constraint leads to an action with 
16 + 16 fields. 

1. Introduction 

At present it is becoming clear that the number N of gravitinos does not specify the 
kind of extended supergravity completely. Even in the simplest case N = 1 we are 
aware of, at least, three kinds of supergravities. Two N = 2 versions are already 
known. For higher N one may expect even greater diversity. The versions differ by 
the content of auxiliary fields. Correspondingly, differences occur in the interactions 
with matter fields, in the mechanism of spontaneous symmetry breaking (when auxiliary 
fields get non-zero vacuum expectations); also, in some versions important additional 
local symmetries appear, etc. In view of all that, it seems instructive to study the 
simplest case N = 1 in detail. This explains the appearance of a number of papers 
devoted to the new minimal version of N = 1 supergravity with local U( l )  symmetry 
(Akulov et a1 1977, Sohnius and West 1981, Bedding and Lang 1981, Howe et a1 
1981, de Wit and RoEek 1981, Gates et a1 1981, Galperin et a1 1981). 

In the present paper we reveal some new and unique features of this model using 
the complex superspace approach to supergravity. In particular, we show the existence 
of a new geometric invariant which is not present in the framework of real superspace. 
We also give an example of successful implementation of a geometric constraint in 
the action by means of a Lagrange multiplier. At the end we consider another version 
of the model with 16+16 fields. Our hope is that some of the above features will 
reappear in the more interesting case of N = 2 supergravity. 

The paper is planned as follows. First, a framework+ €or the description of the 
various N = 1 models is introduced. A complex superspace @4,4$ is considered with 
coordinate transformations leaving invariant the chiral C4,' subspace. The physical 

+ It has already been used for both minimal (Ogievetsky and Sokatchev 1978a, 1980) and non-minimal 
(Siege1 and Gates 1979, Sokatchev 1981a) N = 1 supergravities. 
$ C",' means a complex superspace with n vector and k spinor coordinates. 
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real superspace R434 is embedded in C4*4 as a hypersurface specified by an axial (H”)  
and aspinor (H’, fl”) superfield. Einstein supergravity is described by a one-parameter 
( n  ) family of supergroups preserving a certain relation between the Berezinians 
(superdeterminants) of the @4’4 and C4*2 coordinate transformations. This relation 
becomes particularly simple for two values of n.  For n = - $  the @4s2 supervolume is 
preserved and this is the case of minimal supergravity. For n = 0 the supervolume 
is preserved. This case exhibits a number of new features. First, in the Wess-Zumino 
(wz) gauge there is a local U ( l )  invariance. Second, a peculiar geometric invariant 
emerges, It is the Berezinian of the change of variables from left- to right-handed 
parametrisation of R414 which in this and only this case transforms as a (dimensionless) 
scalar superfield. It corresponds to an invariant subset of 8 + 8  fields. The latter can 
and, moreover, have to be constrained in order to write down an action. Third, unlike 
all other cases of N = 1 supergravity, here the action is not the invariant volume of 
R4,4 (the latter just vanishes (cf Sokatchev 1981b, Howe et a1 1981) when the whole 
8 $. 8 subset is eliminated). The action is now given by a new type of invariant (Howe 
et a1 1981) involving the U(1) part of the vielbeins. The constraint reducing the 
number of fields from 20 +20 to 12 + 12 can be solved explicitly in terms of fields in 
the wz gauge. The resulting theory is exactly the one of Sohnius and West (1981). 
A solution of this constraint in terms of superfields is presented in Gates et a1 (1981). 

Unfortunately, it is not always so easy to solve explicitly the superfield constraints 
in a theory. In certain cases it might even be impossible, in particular in extended 
supergravity. Therefore an alternative approach seems to be of great importance. It 
consists in introducing the constraints into the action by means of Lagrange multipliers 
and then obtaining them as equations of motion. We do not know why this has not 
been attempted even in such simple cases as N = 1 minimal supergravity or super 
Yang-Mills theory, etc. Probably, the greatest difficulty is to get rid of the Lagrange 
multipliers at the end, i.e. to eliminate them from the equations of motion and obtain 
equations involving only the initial dynamic variables. Here we show an example 
where this programme can be successfully carried out. Hopefully, a similar approach 
would work in more complex cases, such as N = 2 supergravity. 

An analysis of U(1) supergravity has already been made in Howe et a1 (1981) in 
the framework of real R434 geometry supplemented by appropriate algebraic con- 
straints. When translated into this language our results are consistent with those of 
the above authors. 

In an appendix we discuss a relaxed version of our constraint which leads to a 
model with 16 + 16 fields. 12 + 12 of them describe the U(1) minimal supergravity 
multiplet coupled to a 4 + 4 ‘notoph’ multiplet (superspin 5 off -shell, 0 on-shell). 

Parts of the results of this paper have been reported at the Second International 
Seminar on Quantum Gravity, Moscow, October 1981 (see Galperin er a1 1981). 

2. Complex superspace 

Let us first recall the geometric framework for non-minimal supergravity developed 
in Sokatchev (1981a) in the spirit of Ogievetsky and Sokatchev (1978a, b) and Siege1 
and Gates (1979). Consider a complex superspace 

c4s4 = { z ~ }  = {x:, e;, q f }  (1) 
where X Y  are four complex vector coordinates and @E, +E are four complex spinor 
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ones, The conjugate coordinates will carry an index R:  

{zR)={x~=(x : )+ ,  i j ' g = ( e t ) + , q ~ ; ; = ( ~ t ) + ) .  ( 2 )  

To distinguish these two parametrisations of @424 we call them left- and right-handed. 
Now we introduce a gauge group in 6=4s4. We choose it to be the group of analytic 

transformations of the coordinates which leave the chiral subspace t 
( 3 )  

SX: =Am(xL, eL), se: = A " ( x ~ ,  eL), sot  =p@(xL,  eL, G ~ ) ,  (4) 

c4v2 = { r L }  = {X :, e t}  
invariant. In  other words, the group has a 'triangular' structure 

where A " and A " are chiral superfunction parameters and p" is a general one. 
The next step is to introduce the real superspace 

i w 4 r 4  = { z }  = {x", e", P }  

x m  = R e  x'c, e" =e: ,  = p ,  

( 5 )  

as a hypersurface in @4s4, e.g. 

Here the coordinates of @434/R4'4 are made arbitrary functions of the coordinates of 
R434. The superfunctions H",  H",  R" define the hypersurface and simultaneously 
determine the (curved) geometry of R4,4. The group (4) induces the following transfor- 
mations : 

X" = X m  ++[A"(XL, eL)+hm(XR, OR)], 
(7a  e'" = e' + A  (xL, eL), @ " = 8 ' " + h P ( ~ R , i R ) ,  

8H" =H"(X ' ,  e ' ,  e ' ) -Hm(X,  8, e)=(1/2i)[Am(xL, 6L)-i 'n(xR, iR) ] ,  

SH" = H ' ~ ( X ' ,  e ' ,  ~ ' ) - H " ( x ,  e, S) =p"(xR, i R ,  ~ R ) - A & ( x L ,  eL), 
sR" = H ' " ( x ' ,  e ' ,  @)-R"(x ,  e, 8)=p"(xL,  eL, (pL)-;i'(xR, &). 

Here zL: 

XLm = x " + i H " ( x ,  e, e), ec = e w ,  4: = ip +R" (x. e,  e), (7c 

(7b  1 

and their conjugates zR are now functions of x, 8, rather than independent coordin- 
ates. In what follows we shall refer to z L  (zR) of equation ( 7 c )  as the left (right)-handed 
parametrisation of [ w 4 v 4 .  

The transformations ( 7 )  correspond to conformal supergravity. Restricting them 
appropriately, one can obtain the transformation group of Einstein supergravity. 
Owing to the triangular structure of the group (4), the Berezinians of both the @4,4 

and @ 4 s 2  transformations have the multiplicative property. So we can single out 
subgroups by imposing a natural restriction 

[Ber(dzL/d~,)]~"" = [Ber(dgL/dgL)12" and HC (8) 

f We thank Professor Yu I Manin for pointing out that the term 'quotient superspace' would be more 
correct for C4,2, i.e. C4.2 = C4~4/Co,r ,  Th' is IS ' suggested by the form of the transformations (4). 
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or, infinitesimally, 

(3n +ljap’/acpi = ( n  +l)(aA”/axLm-aA”/aO~). (9) 

Each value of n corresponds to a non-minimal formulation of supergravity with 20 + 20 
fields (Siegel and Gates 1979). There are only two exceptions. 

At n = -$ equation (8) takes the form 

Ber(%t/arL) = 1, (10) 

i.e. the transformations preserve the supervolume of @ 4 3 2 .  In this case the parameters 
p” ,  6’ are not restricted and with their help the spinor superfields H ” ,  I?’ can be 
gauged away (just as in conformal supergravity). Thus one recovers the minimal 
formulation with 12 + 12 fields. It has been described in detail earlier (Ogievetsky 
and Sokatchev 1978a, 1980) and we are not going to discuss it here. 

The second exceptional value, n = 0, corresponds to the preservation of the total 
supervolume of At n = 0 equation (8) reduces to 

Ber(drL/azL) = 1. (11) 

Respectively, the supervolume element d4xL d20L d2cpL is invariant. This value of n 
is connected with the new minimal version of supergravity as will be explained below. 

3. Field content and transformations 

The field content of each of the above described formulations and the meaning of the 
field transformations are revealed in the Wess-Zumino gauge. We shall do this here 
with the intention of showing how the local U ( l )  group emerges in the case n = Of .  

The parameters A ” ,  A &, p ”  have the following decomposition consistent with 
equation (9): 

A m ( ~ L ,  OL) = a m  + ib” + 
A ~ ( ~ ~ , O ~ ) = ~ ~ + O ~ [ S ~ ( a + i b ) + w , . ” ’ ] + 6 ~ 0 ~ ~ ” ,  

&XL, OL, (PL) = E” + cpt - (-a - ib  ++a,a”++ia,b”) 

+ 6 L 6 L ( ~ m  +id“) ,  

n + l  
3 n + l  

n + l  
2(3n + 1) 

a m ( c m  +id”)+OLOL(P[P(;’). + OLOLcpL& 

All parameters on the RHS of equations (12) are functions of xL. 
From equations (71, (12) one finds that H “  can be gauged into 

H”(X, 0, 8)=6w8’e:c +826”@E +628G$mG +028’A” (13) 

As we learn from Gates et a1 (1981), a similar analysis has been carried out in Siegel (1977). 
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by means of fixing the parameters b”, xz, e m ,  d” in equation (12). Note that a m  
remains unrestricted and it serves as the parameter of general coordinate transforma- 
tions. Further, H’ transforms as follows: 

4n + 2  2n n + l  
3 n + 1  3 n + 1  2(3n+1)  

SH” = E” - E ” + @ ”( - - a-- ib + 

- n + l  
3 n + 1  

+@”e; - ( - f ”  -ia,(c?”p)’) 

where the dots denote field-dependent terms. Now one sees that for n # 0, -;, - +  
one can gauge H” into (see Siegel and Gates 1979) 

HF(x, 8, 8)=B26”+8*8”B +828,(t .  +iw)”’ +8’?p” (15) 
by means of fixing all parameters except F ”(x) (local supersymmetry) and w ( ” ” ) ( x )  
(local Lorentz). The components in equations (13), (15) correspond to the non-minimal 
set of fields. 

4. Peculiarities of the n = 0 case: U ( l )  local group and existence of invariant 

It is remarkable that for n = 0 the parameter ib (x )  (of local y5 ,  or U( 1) transformations) 
drops out of equation (14), so it cannot be fixed and H’ becomes 

H” = 8 ” i A + 8 2 ~ ’ + ~ 2 8 ” B + 8 2 8 , ( v + i w ) ” ’ + 8 2 ~ 2 p i r .  (16) 

In comparison with equation (15) an additional real pseudoscalar field A(x)  appears. 
At the same time, however, U ”’ undergoes gradient transformations with parameter 
b(x), so the total number of components is again 20+20t .  

So, in the family of non-minimal sets of fields there is one and only one allowing 
for local U( l )  transformations. This is not yet the set for the new minimal version of 
N = 1 supergravity as we still have 20 + 20 fields instead of 12 + 12. However, it turns 
out that 8 + 8 fields of this set form a subset closed under supersymmetry transforma- 
tions. This can be shown by the following clear geometrical reasoning. As was stressed 
above, for n = 0 the supervolume is preserved. Consequently, both d8zL and 
d8zR = (d8zL)+ are invariant. On the real hypersurface (6 )  d8zL and dszR are connected 
by the change of variables (see equation (7c)) z L +  z + zR: 

d8zL = Ber(azL/az)d8z = Ber(dzL/az) Ber(dz/dzR)d’ZR. 

U(x,  8,g) = Ber(azL/azR) = Ber(azL/az) Ber-’(azR/az) 

(17) 
Therefore the quantity 

(18) 
is invariant under the transformations (4), (8) for and only for n = O .  The explicit 
form of V(x,  8, g) can be easily calculated. 

t Note that for n = -5 the parameter a ( x )  drops out but a,a“(x) remains and the gauge can still be fixed 
as in equation (15), although thus restricting the general coordinate transformations (Siegel and Gates 1979). 
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where (Ogievetsky and Sokatchev 1980) 

&, = 4, -i&,H”(l-iaH),’na, 

so 

det(Sl  +id,Hm) det(St +A&’) 
det(S;, + &’B;) det(SY - id ,H”)  

U ~ X ,  e, $1 = (20) 

Clearly, UU’ = 1, therefore U = exp(iu). The real superfield U ( x ,  0, $) is the carrier 
of the invariant 8 + 8 subset. It is a new quantity not yet encountered either in minimal 
or non-minimal supergravity. Its origin is essentially in the complex structure of C434 
and it cannot be explained in the framework of real superspace geometry. It is neither 
a torsion nor a curvature component, nor anything else known in real supergeometry. 

5. Constraints on the prepotentials 

Since U is an invariant object it can be used to write down constraints. In fact, one 
must do that if one wishes to construct an action. Indeed, as was mentioned above, 
the field U, = ~ ( c r , ) ~ ~ ~ ” ”  in equation (16) (as well as A “  in equation (13)) transforms 
as a gauge field for U(1). However, its dimension is cm-2’i, so it cannot have a normal 
kinetic term of the type The only way it can enter a Lagrangian is to be 
coupled to a divergenceless (i.e. constrained) axial vector field. This is, indeed, the 
case realised in the new minimal version of Sohnius and West (1981) and Akulov et 
a1 (1977). The corresponding constraint is 

The solution to it is easily found in terms of components in the wz gauge i13), (16): 

A =0 ,  6” = 0,  B =0 ,  W ,  = - Tame 1 m  ,, p” = ia,Gm’, (22a) 

(226 1 dm(Am - eT t .“ )  = 0. 

Equation (226) means that 
+ 

ana&[, ah/  = - a l k  = a k /  (23) 

so the ‘notoph’ (Ogievetsky and Polubarinov 1966) akr of Sohnius and West (1981) 
and Akulov er a1 (1977) (together with its additional invariance Sa&/ = akbr -a[&) 
appears as a solution to the constraint. 

= 

A weaker constraint will be discussed in the appendix. 

7 [ H p ]  = [ a ” ]  = cm’” but all components of H” have to include a factor x ,  [ X I  = cm, since they vanish in 
the flat limit. 



N = 1 supergravity with local U (  1) invariance 3791 

6. Invariant integrals and action principle 

The constraint (21) enables us to write down an action. To this end we first need an 
invariant integral for R4,4. Let R4,4 be parametrised by z? (or their conjugates zf) 
defined in equation ( 7 c )  instead of z M .  Then, according to the geometric meaning of 
our gauge group (4), (1 1) the following integrals, 

are invariant. Hence @ ( z )  is a real scalar superfield, and adzL) = @R(zR)+ = @ ( z ) .  
Further, as a consequence of the constraint (21), 

therefore 

I L = I R =  I d8ZE@‘(z). (26) 

Note that the density E is in fact the Berezinian of vielbeins for the curved R4’4 with 
local U(1) in the tangent space (see (i 8). If we choose @ ( z )  = 1 in equation (24) the 
integrals will vanish and so will the integral in equation (26), i.e. the invariant volume 
of R434 (the same phenomenon was observed in Howe et a1 (1981); see also Sokatchev 
(1981b)). So, the supervolume of R4.4 is not an adequate action for n = 0, unlike all 
cases with n # 0. If we had some non-trivial dimensionless scalar superfield construc- 
ted out of the prepotentials, we could put it in equation (26) and try this as an action; 
however, the only such object is U of equation (20) and it is 1 in our case. 

Fortunately, the unique properties of the superspace in this case provide another 
way of constructing an action. Sumose that @ in eauation (26) is not a scalar but 
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It transforms according to equation (27): 

S In F = L + R ,  

L(xL,  e,) = ah “/ax Y -ah "/set, R =L’ (27’) 
where L(R)  is the variation of the @432 volume element. In fact, F is a part of the 
vielbeins E t ,  E? (see below). 

Now we are prepared to write down the action for the new minimal version. 
Putting equations (25), (28) into the invariant integral, one finds 

S = 3 d4x d28 d 2 8 E  In F (29) x ‘ I  
which should be considered together with the constraint (21). Inserting the component 
field solution (22), (23) to this constraint into the action (29), one obtains exactly the 
action of Sohnius and West (1981). 

7. Implementing the constraint in the action by means of Lagrange multipliers 

An action with the dynamic variables restricted by a constraint poses serious problems. 
For instance, obtaining equations of motion by variation is a non-trivial task. Further, 
the quantisation is rather difficult, etc. 

As pointed out in the introduction, a possible way out (besides the explicit solution 
of the constraint, which is not always so easy) is to introduce Lagrange multipliers in 
the action and obtain the constraints as equations of motion. In the case of U( l )  
supergravity this can be done as follows. 

The first problem encountered when trying to implement the constraint (21) into 
the action (29) is that the latter ceases to be invariant. Indeed, the transformation 
(27’) of In F in equation (29) leaves S invariant only if equation (21) holds. Therefore, 
one has to compensate for this transformation. To this end one introduces a real 
pseudoscalar superfield cp (x, 8, 8) transforming as follows: 

I ,  

e’“ = ei“ Ber(alL/al,) Ber-’(alK/agR) 

or infinitesimally 

Scp = -i(L - R )  (30) 

where L ( R )  is given in equation (27’). This is obviously a group covariant law. Further, 
consider the integral 

zL(ln F + iq) = 7 d8z EU’”(1n F + iq) 
X X ‘ I  

(see equations (19), (20), (25)). Evidently, 

SI =7 d zL(S l n F + i S c p ) = T  d8zL2L(xL,BL)=0, 
x ‘ I  x ‘ I  

so I in equation (31) is invariant. Its real part 

‘ I  $ = t ( I + I ’ ) = y  d8zE[U”2(lnF+iq)+U-”2(lnF-icp)] (32) 
2% 
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is a generalisation of the action (29)t (when cp = O  and the constraint (21) holds, 
equation (32) reduces to equation (29)). It is invariant without the help of the 
constraint. Furthermore, the variation of cp in equation (32) produces just the con- 
straint (21) as an equation of motion. So, the superfield cp plays a dual role: it is a 
compensating superfield for the main term in the action and a Lagrange multiplier 
for the constraint. It remains to see how one can eliminate the Lagrange multiplier 
from the rest of the equations. 

The variation of H",  g" in equation (32) gives the following equation (up to terms 
vanishing owing to the already obtained equation (2 1)): 

&+( ln  F +icp) = 0 and HC. (33) 
It is indeed a covariant equation since 

S (In F + icp) = 2L(xL, 0,) and &L = 0. 

Equation (33) has the following general solution: 

In F = $ ( I  + z ) ,  cp = -+i(l--z), 

where 

are arbitrary chiral superfields. So, equation (34a) fixes the Lagrange multiplier (up 
to gauge freedom, see equation (30)). Equation (346) means that In F vanishes up 
to an arbitrary chiral part. Since the gauge freedom (27') in In F is just of the type 
(346), one can conclude that the gauge invariant part of In F is zero. In § 8 we shall 
see that In F is the prepotential for the local U(1) invariance in the tangent (super) 
space, and the corresponding gauge invariants are the U(1) curvatures FAB. So, our 
second equation of motion (33) is equivalent to 

F A B  = 0 on-shell. (35) 
We shall come back to this below. 

Finally, we consider the variation of H". It is not hard to see (using the already 
derived equation (21)) that in the corresponding equation of motion only the deriva- 
tives of cp appear. They can be replaced by derivatives of In F according to equation 
(33). Thus, the Lagrange multiplier can be eliminated completely. The resulting 
equation involves only H", H" and fi' and has the form 

G, = 0  

where G, is a certain torsion component (see § 8). This is not surprising, since G, is 
the only covariant vector of the right dimension in the theory. It is indeed the equation 
of motion found in Howe et a1 (1981). 

The last question is whether our second equation (33) in the form (35) is compatible 
with equation (36). In the differential geometry formalism (§  8) one can show that 
all the non-vanishing components of  FA^ are covariant derivatives of G,, so equation 
(35) is itself a corollary of equation (36). 

To end this section, we would like to point out two similarities between the case 
discussed here and the N = 2 supergravity theory (Sokatchev 1981a, b). First, in both 
cases the invariant volume of the real superspace vanishes as a consequence of the 

+ W e  are grateful to Dr B M Zupnik for an important improvement of the form of the action (32). 
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constraints. Second, both actions are not invariant unless the constraints are imposed. 
On these grounds one may hope that the method of Lagrange multipliers can be 
applied to the N = 2 case successfully. 

8. Differential geometry in R4’4 

The geometry of the real superspace R4s4 is determined by the fact that it is embedded 
as a hypersurface in a complex superspace. This means that such invariant characteris- 
tics of R4.4 as torsion and curvature can be simply calculated instead of being postulated. 

is a straightforward 
procedure (see Ogievetsky and Sokatchev 1980). Notice that it can be done before 
imposing the constraint (21) (the latter is needed only for the action). Here we shall 
recall just the main steps. 

The development of the differential geometry formalism for 

The derivative 

of a scalar superfield transforms homogeneously under the group (4), (8) 
(infinitesimally): 

S ( V , @ )  = -(V,pO)V& = +(VBpp)Va@-  ( V @ ’ ) ) V P @ .  (38) 
The second term in equation (38) is an induced Lorentz transformation in the tangent 
space, while the first one is an induced Weyl one. In fact, the component field analysis 
of 8 3 shows that in x space there is only a U(1) tangent group. So one should expect 
to have only it induced in the tangent superspace. Therefore one should compensate 
for the dilatation part in equation (38) by introducing a factor F into the definition 
of the spinor covariant derivative of a scalar weightless superfield: 

(39) De@ = FV,@ = E m M a M @ .  

This factor must transform as follows (see equations (9), (27’)): 

SF = -!(vp + V ~ ) F  = ;(L + R ) F .  (40) 

A fully covariant derivative requires a connection 

(41) 

The latter has both Lorentz and U(1) parts. Further, the vector covariant derivative 
can be defined as 

U C D, = E,‘ d M  + @,B . 

D, EaM a M  = {Da, B&}, (42) 

thus automatically choosing the torsion components 

The last of the equations (43) allows us to express the connection in terms of 
H“, H w ,  R’ and F, F. In particular, for its U(1) part one finds 

(44) 
B 

w,B - F V ,  1nF. 
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Having obtained the vielbeins Ey we can define left- or right-handed vielbeins Iy 
(r:) by changing variables from z M M  to z L or z R : 

Eya jaz"  = I y a j a z y  = r y a j a z f .  (45) 

According to equation (1 1) the Berezinians of 1: and ry transform as scalars, so they 
can be put equal to some function of the scalar U of equation (20), thus obtaining 
equations for the factors F, P (39). The particular choice 

Ber(1y) = U-1'2 (46) 

leads to the form of F = P  given in equation (28). Further, Ber (Ey)  calculated with 
the above value of F is indeed equal to E-' of equation (25). 

The last step is to calculate the invariant tensors (torsion components) using the 
covariant derivatives already defined. Our results agree with those of Howe et a1 
(1981) but we ought to point out the following. The quantity U of equation (20) is 
an invariant of the group although there is no room for it among the torsion com- 
ponents. However, its covariant derivatives do appear as torsion components, e.g. 
Tabb is expressed in terms of DaU, Taby in terms of DDU, etc. So, the constraint 
(21) yields the vanishing of all those torsion components. In the framework of real 
superspace geometry U is not present. There, however, there is the constraint 

b b Tuh = T a b  = 0  

which is equivalent to 

D,U = 0,U = 0 (47) 
in our language. Equation (47) implies U =constant which is essentially the same as 
equation (21). This explains the agreement between the two approaches. 
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Appendix: a weaker constraint 

Here we would like to discuss briefly a weaker constraint on the superfield U. In this 
case we get 4 + 4  additional degrees of freedom. They are a superanalogue of the 
'notoph' (Ogievetsky and Polubarinov 1966) (superspin 0 on-shell and 2 off -shell) 
which interacts with U( 1) supergravity. 

Consider the integral 

taken over R4,4 in the left-handed parametrisation. According to equation (27') 

' I  1 SI1 =- I dszL (L  + R )  = 7 dszL R 
x x 
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because L does not depend on GL. Further, going to the right-handed parametrisation, 
we find 

because now R does not depend on QR.  So, I I  will be invariant if 

a2u/ap;=o.  (A4) 
This is a covariant (the LHS of equation (A4) transforms as a scalar with a chiral 
weight) constraint weaker than equation (21). Notice that the quantity Il is not real 
since U is not 1 now. Furthermore, we can write down another non-trivial complex 
invariant 

where f (  U )  is any function of the scalar U. 
The constraint (A4) can be solved in terms of component fields. The pseudoscalar 

field A and the the spinor 5" in equation (16) remain unrestricted; B = 0 and p" is 
expressed in terms of 5" and 4"" from equation (13j; finally, the vector U"' and axial 
vector w "" are constfained as follows: 

A" (u+iw)aol i 
-2 

a,am = 0. 

Here one has a complex, i.e. two real antisymmetric tensors apq # a :q. The fields A, (", 
p, i(apq - a & )  form a superspin $ multiplet (off-shell). 

The invariant integral ZI ( A l )  gives rise to the following action (we consider the 
bosonic sector only): 

1 1 1  
SI = 7 d4 x det-' ZT( - - 

x 2 R (e') 

3 
- e',",Z"""a,Aa,A(A2+ 1 -2iA) (1  - ~ A ) ~ ( I  + i ~ y  

Here R (e') is the usual gravitational Lagrangian, the term with d,AdnA is the kinetic 
term for the pseudoscalar A and a*A is the U(1) covariant coupling of the notoph 
to the U(1) gauge field. 
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The second integral I2  ( A 3  for the particular choicef(U) = U p  produces the action 

This is an action for the notoph multiplet alone. Combining the real parts of equations 
(A7) and (A8), one can find actions with correct relative sign of the gravitational and 
pseudoscalar kinetic terms. 

The fermionic part is just a combination of the Rarita-Schwinger action for 4"' 
and the Dirac action for 6". Owing to the dual nature of the notoph a m  (spin-1 
off -shell, 0 on-shell) the notoph multiplet describes superspin 0 on-shell. 
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